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Abstract
The electronic structure of CeCoIn5, derived from a self-consistent calculation
by means of a local density approximation (LDA) potential within the
augmented plane wave framework, is used as an initial state. Considering this
state, a mean field approximation from the multiband Hubbard Hamiltonian
has been considered in order to include the strong correlation effects and a
new self-consistent band structure has been determined. The results yield a
spectrum where the splitting of the Hubbard bands is clearly displayed and
the two-dimensional character of the electronic structure of this compound is
obtained in a better way with respect to the structure attained with the simple
LDA calculation.

1. Introduction

CeCoIn5 has been discovered to be a superconductor [1–4], whose transition temperature
(Tc = 2.3 K) at room pressure is the highest of the superconducting heavy-fermion compounds.
This Ce compound crystallizes into the HoCoGa5 tetragonal crystal structure [1–4]. The
lattice parameters are a = 4.62 Å and c = 7.56 Å and the experimental data available
seem to indicate that the electronic dynamic occurs fundamentally in a two-dimensional way
where alternating layers [1–4] of CeIn and CoIn4 seem to be almost independent, giving this
compound a characteristic 2D structure similar to that of the LaCuO4 systems. The unit
cell of this compound contains a molecule where the Ce atoms are located at the vertexes,
forming a rectangle with an In atom in its centre. The electronic structure from the local
density approximation (LDA) shows that the electrically active electrons close to EF belong
to this CeIn rectangle. Another group, CoIn4, is located between the two layers of CeIn
and seems to be more responsible for the magnetic properties than the CeIn layer. The high
electronic specific heat in the normal state above the transition temperature, i.e. T > 2.5 K,
is 290 mJ mol−1 K−2, indicating its heavy-fermion behaviour [1–4]. In addition, this specific
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heat for temperatures less than Tc, C/T = 0.04 + 0.25T J mol−1 K−2, is a clear feature of
unconventional superconductivity, which can imply node lines in the superconducting gap,
possibly with anisotropic pair potential arising from magnetic interactions.

The first step in determining the electronic structure is the LDA Hamiltonian [5, 6]. Let us
summarize the characteristics of the LDA electronic structure in this way: the band-structure
from the local density formalism [5, 6] presents a width of around 8.2 eV from the band bottom
up to EF. The conduction band has 12 extended subbands that fundamentally arise from the
cobalt d orbitals, and s and p orbitals from the In atoms. These extended bands are strongly
hybridized and the Fermi level is at 0.44 Ryd with respect to the zero of the muffin-tin potential.
At around EF seven Ce f bands appear. The f bands cross the Fermi level as well as the d
bands of cerium and cobalt, and the s and p bands of indium. This implies slightly different
occupations for the corresponding bands within each l-angular momentum orbital because the
crystal symmetry slightly breaks the l-degeneracy, although the band dispersion effects soften
the splitting. In the case of the f orbitals, the spatial localization of the charge implies that small
variations in the gravity centres along with different hybridizations produce some differences
in their occupations. The narrowness of the flat f bands is clear [5] and this circumstance
implies that the inclusion of the Hubbard Hamiltonian is legitimate. The d band states coming
from the Co atom are below the EF and present an intermediate electronic correlation with
sufficiently localized states that are, however, obviously less than the f states. This implies
that the Coulomb interaction in the same atom, the familiar U , is also large although clearly
less than that of the f states. As a consequence, in this calculation we have not included a
Hubbard pseudopotential for these d bands. The localization of the 4f states and their partial
orbital occupation have as a consequence that the crystal field effects are smaller than the
well known U -energy, which for the Ce compounds becomes around 7 eV. Therefore, the
second step for the analysis of this electronic structure of CeCoIn5 is the determination of
the Hubbard splitting in lower and upper bands, which constitutes one of the most significant
strong correlation effects within the electronic structure of these compounds. The calculation
of these effects and the analysis of the resulting electronic structure is the main goal of this
paper.

2. Band structure with strong correlation pseudopotential

At the present time, to the authors’ knowledge, only LDA calculations [5, 6] have been realized
in this intermetallic alloy and there is no calculation in the literature for this compound within
this LDA + U approximation. Therefore, this could be a new step for understanding the
electronic structure of the normal state of this heavy-fermion superconductor. The main
reasons provided by the experimental data for spending time on the band structure calculations
including strong correlation effects are that

(i) the f states of Ce are located at EF and this situation is a clear scenario, present in many
different materials, where the Coulomb correlation effects are substantial in the normal
and superconductor states,

(ii) the simple LDA is not able to give the upper and lower bands which will foreseeably
appear in direct and inverse photoemision spectroscopies and

(iii) another important failure of the LDA calculation is that because the LDA Hamiltonian
does not split the different f symmetries and as these states are dominant in EF, the planar
structure of this compound is not clearly shown in the LDA calculation and can only be
seen as a tendency toward this two-dimensional dynamic.
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The Coulomb correlation effects imply that the occupation differences in the f orbitals can
induce sensible variations in the corresponding Coulomb correlation pseudopotentials [7, 8].
The existence of different pseudopotentials for each f symmetry implies that the procedure
for calculating the band structure has to be self-consistent, since these pseudopotentials can
produce drastic variations in the energy position of the corresponding f orbitals. On the
other hand, the LDA potential, VLDA, is also strongly dependent on the occupation of the f
level, and generally the actions of this potential are in competitive directions to the Hubbard
pseudopotentials. As is well known, the Coulomb correlation effects should be included in
the electronic structure starting from a ground state electronic structure where the Hubbard
Hamiltonian effects should be excluded. The pseudopotential [7, 8] for each f j orbital is
Vj = U(nf −n j )|f j〉〈f j |, where |f j〉〈f j | is the projector for the f orbital with a given symmetry.
U is the Coulomb Hubbard energy;n j is the self-consistent obtained occupation of the f j orbital
(the seven f j orbitals should be compatible with the crystal symmetry group), and nf = ∑

j n j

is the total occupation within a given atom of the f level. The self-consistency, considering
the two potentials VLDA and VU = ∑

j V j , has many variants and the methodology followed
in this paper consists of a calculation of VU pseudopotential and VLDA for each iteration. We
initialize the LDA +U calculations starting from the last iteration LDA potential. The solution
of the corresponding Schrödinger equation, considering the two potentials, is realized within
a modified augmented plane wave procedure [8]. As stated above, one of the main objectives
of this calculation is to obtain the Hubbard splitting that yields the characteristic lower and
upper Hubbard bands. The action of the VU potential in each iteration is to locate each f j

orbital as an independent f j level with a different energy, which is constituted as a f j band
gravity centre (� j ). So, a larger previous occupation leads to a smaller energy increase of
the corresponding f j level due to VU . In contrast, the LDA potential does not distinguish the
different f j symmetries and therefore yields a degenerate f j level with some small splitting of
the corresponding band centres due to the different hybridization and the different effects of
the crystalline field in each f j symmetry.

The two competing and contradictory actions of VU and VLDA in each iteration require
a subtle and complex strategy in the self-consistent calculation. It is well known that in
the cases in which the Coulomb correlation is larger than the crystal field effects several
convergent solutions exist that are obtained self-consistently. In all self-consistent processes,
the total charge density for obtaining the corresponding potential for a given i iteration has to
be constructed by means of the golden rule: ρ(�r) = αρi (�r) + (1 −α)ρi−1(�r), where ρi (�r) and
ρi−1(�r) are the charge densities obtained in the iterations, i and i − 1, respectively, and the α

parameter, which can take any value larger than zero and less than unity, does not modify the
final result although it can modify the difficulties for obtaining it. In the case of two competing
potentials such as VU and VLDA, the occupations of the f j orbitals in the final results can depend
on the f j occupations in the initial state (i.e. the final results of the LDA calculation) and the
α parameter. Consequently, it is possible to arrive at different final self-consistent solutions
according to the chosen α parameter in the LDA + U calculations. Even for small differences
in the value of this α parameter, the distribution of f j occupations is different, although the final
result of nf = ∑

j n j only suffers slight modifications for the different values of α. Finding
the optimal initial f j occupations and the value for the α parameter is calculation work, maybe
without physical significance in itself, but strictly necessary in order to legitimate the final
result. The optimal results for the calculation process should be when the final distribution of
the f j -occupations is such that the total energy of the corresponding self-consistently electronic
structure is minimal. Therefore, it is important to determine the total energy of the electronic
structure as a function of those physical variables that can be susceptible to being modified in
each self-consistent procedure.
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2.1. Total energy

The total number of conduction electrons, nT, is

nT = n0
f + n−

f +
∫ EF

b
Nspd(ε) dε, (1)

where n0
f is the electron number in partially occupied f j orbitals, n0

f ≡ ∑µ

j=1 n j , with

n j = ∫ EF

b N j (ε) dε being the occupation of a given f j symmetry, N j (ε) the f DOS of this
f j orbital, and b the conduction band bottom; n−

f is the electron number in totally occupied f j

orbitals [n−
f = ∑µ+m

j=µ+1 n j � m]; Nspd(ε) is the density of states excluding all the f j states.
Therefore, the number of f electrons is nf = n0

f + n−
f . The Fermi level EF can vary for each

self-consistent process, and the charge conservation implies that DF δEF + δn0
f � 0 where

DF ≡ Nspd(EF) is the DOS of non-f orbitals in the Fermi level.
Each LDA + U self-consistent process can start with arbitrary n j occupation numbers.

One can choose those n j occupations coming from the LDA calculations. With these initial
n j occupation numbers and using a modified APW method [8], the energy bands, the Fermi
level and new values of n j are calculated, and a new iteration can then start. Each f j

orbital has two gravity band centres, with and without considering the potential of the other f
electrons. These two band centres are called � j and γ j , respectively, and their relationship is
� j = γ j + nfU0 + U(nf − n j ), where U0 is given approximately by the F0 Slater integral and
U(nf − n j ) is the first order self-energy correction within the Hubbard Hamiltonian for each
j symmetry of the f orbitals.

In each self-consistent process, the total energy is given by

ET =
∫ EF

b
εNspd(ε) dε +

µ∑
j=1

∫ EF

b
εN j (ε) dε +

µ+m∑
j=µ+1

� j . (2)

Consequently, it is clear that the valid results should arise from a self-consistent process that
ensures the minimal total energy in equation (2). In this paper we give the definite results, i.e. the
electronic structure whose total energy from equation (2) is minimal when the convergence in
the self-consistent process is obtained.

3. Results

Figure 1 shows the partial f DOS distributed by the different f j symmetries obtained from
the LDA calculation. In this crystal symmetry group the compatible f j symmetries are
f1 = 5z3−3z, (f2, f3) = (5x3−3x, 5y3−3y), f4 = x2z−y2z, (f5, f6) = (y2x−z2x, z2 y−x2y),
and f7 = xyz. According to these results, the occupations of the f orbitals, f1, (f2, f3), f4,
(f5, f6), and f7, are 0.16, (0.12, 0.12), 0.23, (0.17, 0.17), and 0.08, respectively. Each of these
4f states tends to be hybridized with those orbitals of the In(1), which are located in the same
CeIn layer, although these states are also hybridized with the states of the other In atoms. This
LDA band structure is taken into account for considering the initial conditions for the LDA+U
calculation.

In figure 2, we give the band structure deduced from the two potentials, VLDA and VU ,
described above and corresponding to the electronic structure of minimal total energy. In
comparison with figure 1 of our previous paper [5], one can see that, in addition to the 12
extended bands that appear in the LDA calculation, in figure 2 the corresponding band to the f4

orbital (x2 − y2)z appears 0.4 Ryd below the EF, weakly hybridized with the s and p orbitals
of In and practically without hybridization with the d states of Co. The dominance of the f
states in energies close to, but larger than, EF is clearly shown in figures 3 and 4. In figure 3,
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Figure 1. Partial density of states for each f j orbital from the LDA calculation.
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Figure 2. LDA + U band structure of CeCoIn5.

we present the total DOS corresponding to the band structure of figure 2. The differences with
the corresponding LDA results of [5] are clear:

(i) the f4 = (x2−y2)z peak located 0.4 Ryd below EF does not appear in the LDA calculation,
(ii) the splitting of the unoccupied f peaks, and the location of EF just below the peak

corresponding to the two-dimensional f subspace whose symmetry is (f2, f3) = (5x3 −
3x, 5y3 − 3y), and

(iii) the totally unoccupied f states are split from those arising from the (x2 − y2)z states with
an energy of 0.45 Ryd, which is the U -value considered in the construction of the VU

pseudopotential in all our calculations.

The fact that there is no relevant hybridization of the cobalt d orbitals with the cerium f
band states, and also that the electrical dynamic is governed by the (5x3 − 3x, 5y3 − 3y)

states which are the closest states to the EF, allows us to think of this material as a double-
layered compound with two almost independent structures; this idea is in accordance with
some experimental conclusions [1–4].
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Figure 3. LDA + U total density of states.
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Figure 4. LDA + U partial density of the states for each f j orbital.

In figure 5, we give a polar representation of the directional dependence of the charge
density in the LDA and LDA + U calculations. We represent the charge density ρ(r̂) =∑

k

∑
j |〈�k(r̂)|f j(r̂)〉|2, where �k(r̂) is the angular part (inside the muffin-tin spheres) of the

self-consistent solution of the Schrodinger equation in the solid and f j(r̂) are the angular parts
of the f j symmetries. The k-index runs over all the occupied states in the first Brillouin zone.
In figure 5(a) we draw the directional dependence of the charge density of the LDA calculation.
This charge density of figure 5(a) does not display any two-dimensional nature of the charge
distribution. In contrast, in figure 5(b), the tendency to bidimensionality in the x–y plane of
the charge density distribution is clearly shown.

The facts described in the above item (ii) concerning our results in figures 3 and 4 and
those calculations shown in figure 5 are a quantitative theoretical ratification of the two-
dimensionality of this material. This point is a clear improvement with respect to the LDA
result concerning the dimensionality of this compound (the LDA Hamiltonian is not able to
determine the true directionality of the charge density and the vectorial overlapping of the
states close to EF [5]).



LDA + U electronic structure of CeCoIn5 6947

(a) (b)

Figure 5. Polar representation of the directional dependence of the charge density corresponding
to the band structures: (a) LDA and (b) LDA + U .

4. Final comments

Equation (2) is obtained taking into account a first perturbation order in the evaluation of
the total energy with the Hubbard Hamiltonian. In other higher orders the expression of ET

only differs in the last term,
∑µ+m

i=µ+1 �i . However, as is well known, the mean field can yield
sufficiently valid results for the total energy of the systems. The inclusion of higher orders
can be important in order to obtain self-energy effects, which can be responsible for a part
of the mass renormalization of the states close to EF. This point could be another step of
the process of achieving the electronic structure of this material. Nevertheless, the heavy-
fermion properties with the superconducting behaviour seems to be concatenated in these
types of materials. This induces us to think that the mass renormalization is not only due to
a self-energy effect in the electronic structure near EF, but coorporative effects arising from
spin fluctuations can play an important role in both the thermodynamic properties and the
fermionic coupling mechanism. In the double structure, the CoIn5 planes present a 2D lattice
in which a spin field can arise from the d states of Co and the extended bands are formed
by the s and p orbital band states of In(2), located in the centre of this square spin lattice.
The dynamics of this CoIn4 layer have the ingredients of a Kondo lattice systems in two
dimensions, which can be treated by means of a double-exchange Hamiltonian, JKondo plus the
induced JRKKY. The existence of these CoIn4 layers may imply the combination and even the
competition with another physically more complex substructure arising from the CeIn planes.
As is well known, the double-exchange materials present strong instabilities and different
quantum phases [9] that appear due to small variations in the dynamic parameters governing
the spectra of this general Hamiltonian. The inter-relationship of these phases corresponding to
each substructure depends on the symmetry of the f j states near EF as well as their hybridization
with other states. These facts are relevant to the nature of the band structure, and allow the
Hamiltonian parameters of the Kondo/Heisenberg system to be quantitatively obtained, which
may provide a mean by which to analyse this material’s unconventional superconductivity, and
whose treatment and study will be set out from this mixed exchange model in a future study.
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References

[1] Murphy T P, Hall D, Palm E C, Tozer S W, Petrovic C and Fisk Z 2002 Phys. Rev. B 65 100514
[2] Petrovic C, Pagliuso P G, Hundley M F, Movshovich R, Sarrao J L, Thompson J D, Fisk Z and Monthoux P 2001

J. Phys.: Condens. Matter 13 L337
[3] Moshopoulou E G, Fisk Z, Sarrao J L and Thompson J D 2001 J. Solid State Chem. 158 25
[4] Movshovich R, Jaime M, Thompson J D, Petrovic C, Fisk Z, Pagliuso P G and Sarrao J L 2001 Phys. Rev. Lett.

86 5152
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